Posted on

Introducing the aX Ambisonics Plugins

aXCompressor - Tenth order Ambisonics compressor plugin

Today I am very happy to be releasing my latest work: the aX Ambisonics plugins. They are the result of a lot of work and it is great to be able to finally release them into the world.

The aX Plugins are a set of VST plugins intended to make your work with spatial and immersive audio that little bit easier. They come in three variations each with equivalent plugins – a1, a3 and a7.

Which one you choose will depend on the level of spatial resolution you need for your project (how accurately the spatial properties are reproduced to the final listener). The different levels are known in the Ambisonics world as the order and can theoretically go to infinity. In practice we can (thankfully!) stop somewhere quite a bit before infinity! The aX Plugins give you a choice between basic, advanced and future-proof version.

What are the plugins and what can they do?

There are currently seven plugins in each suite with a different purpose. Here is a quick summary:

  1. aXPanner – a stereo to Ambisonics encoder to bring your sounds into the spatial domain.
  2. aXRotate – this plugin will let you rotate a single track or a full sound scene to make sure you have everything exactly where you want it.
  3. aXMonitor – Ambisonics needs a decoder to be listened to. This plugin decodes to binaural 3D audio (over headphones) or to standard stereo. This means you can always share your creativity via traditional channels.
  4. aXCompressor – Ambisonics requires careful handling of the audio to avoid changing the spatial balance. aXCompressor lets you compress the signal without alteration.
  5. aXGate – simiarly, this plugin acts as a noise gate and downwards expander while preserving the spatial fidelity.
  6. aXEqualizer – safely sculpt the tone of your signals.
  7. aXDelay – get creative with five independent delay modules that can be rotated independently of the original signal.

I will be doing a series of posts going into more detail about each plugin. You can also get more information on the product pages. In the meantime, if you are curious, you can download demo versions of these plugins (for evaluation purposes only) here and if you like them you can support future development by buying them from the shop. Thanks!

a1Monitor - First order Ambisonics stereo and binaural decoding plugin
a3Equalizer - Third order Ambisonics EQ plugin
a7Compressor- Seventh order Ambisonics compressor plugin
a7Delay - Seventh order Ambisonics delay plugin
a3Gate - Third order Ambisonics gate and downwards expander plugin
a3Monitor - Third order Ambisonics stereo and binaural rendering plugin
a3Panner - Third order Ambisonics encoder/panner plugin
a1Delay - First order Ambisonics delay plugin
a1Equalizer- First order Ambisonics equalizer plugin
a1Gate - First order Ambisonics gate and downwards expander plugin
a1Rotate - First order Ambisonics rotator plugin
a1Compressor - First order Ambisonics compressor plugin
a3Compressor- Third order Ambisonics compressor plugin
a3Rotate - Third order Ambisonics rotate plugin
a3Delay - Third order Ambisonics delay plugin
a7Panner - Seventh order Ambisonics encoder/panner plugin
a7Monitor - Seventh order Ambisonics stereo and binaural rendering plugin
a7Gate - Seventh order Ambisonics gate and downwards expander plugin
a7Equalizer - Seventh order Ambisonics EQ plugin
a7Rotate - Seventh order Ambisonics rotate plugin
Posted on

What’s Missing From Your 3D Sound Toolbox?

Audio for VR/AR is getting a lot of attention these days, now that people are realising how essential good spatial audio is for an immersive experience. But we still don’t have as many tools as are available for stereo. Not even close!

This is because Ambisonics has to handled carefully when processing in order to keep the correct spatial effect – even a small phase change between channels significantly alter the spatial effect – so there are very few plugins that can be used after the sound has been encoded.

To avoid this problem we can apply effects and processing before spatial encoding, but then we are restricted in what we can do and how we can place it. It is also not an option if you are using an Ambisonics microphone (such as the SoundField, Tetra Mic or AMBEO VR), because it is already encoded! We need to be able to process Ambisonics channels directly without destroying the spatial effect.

So, what is missing from your 3D sound toolbox? Is there a plugin that you would reach for in stereo that doesn’t exist for spatial audio? Maybe you want to take advantage of the additional spatial dimensions but don’t have a tool to help you do that. Whatever you need, I am interested in hearing about it. I have a number of plugins that will be available soon that will fulfil some technical and creative requirements, but there can always be more! In fact, I’ve already released the first one for free. I am particularly interested in creative tools that would be applied after encoding but before decoding.

With that in mind, I am asking what you would like to see that doesn’t exist. If you are the first person to suggest an idea (either via the form or in the comments) and I am able to make it into a plugin then you’ll get a free copy! There is plenty of work to do to get spatial audio tools to the level of stereo but, with your help, I want to make a start.

Posted on

What Is… Higher Order Ambisonics?

This post is part of a What Is… series that explains spatial audio techniques and terminology.

The last post was a brief introduction to Ambisonics covering some of the main concepts of first-order Ambisonics. Here I’ll give an overview of what is meant by Higher Order Ambisonics (HOA). We’ll be sticking to the more practical details here and leaving the maths and sound field analysis for later.


Higher Order Ambisonics (HOA) is a technique for storing and reproducing a sound field at a particular point to an arbitrary degree of spatial accuracy. The degree of accuracy to which the sound field can be reproduced depends on several elements: the number of loudspeakers available at the reproduction stage, how much storage space you have, computer power, download/transmission limits etc. As with most things, the more accuracy you want the more data you need to handle.

Encoding

Spherical harmonics used for third-order HOA (image by Dr Franz Zotter https://commons.wikimedia.org/wiki/File:Spherical_Harmonics_deg3.png)

In its most basic form, HOA is used to reconstruct a plane wave by decomposing the sound field into spherical harmonics. This process is known as encoding. Encoding creates a set of signals that depend on the position of the sound source, with the channels weighted depending on the source direction. The functions become more and more complex as the HOA order increases. The spherical harmonics are shown in the image up to third-order. These third-order signals include, as a subset, the omnidirectional zeroth-order and the first-order figure-of-eights. Depending on the source direction and the channel, the signal can also have its polarity inverted (the darker lobes).

An infinite number of spherical harmonics are needed to perfectly recreate the sound field but in practice the series is limited to a finite order \(M\). An ambisonic reconstruction of order \(M > 1\) is referred to as Higher Order Ambisonics (HOA).

An HOA encoded sound field requires \((M+1)^{2}\) channels to represent the scene, e.g 4 for first-order, 9 for second, 16 for third, etc. We can see that very quickly we require a very large number of audio channels even for relatively low orders. However, as with first-order Ambisonics, it is possible to do rotations of the full sound field relatively easily, allowing for integration with head tracker information for VR/AR purposes. The number of channels remains the same no matter how many sources we include. This is a great advantage for Ambisonics.

Decoding

The sound field generated by order 1, 3, 5 and 7 Ambisonics for a 500 Hz sine wave. The black circle in the middle is approximately the size of a listener’s head.

The encoded channels contain the spatial information of the sound sources but are not intended to be listened to directly. A decoder is required that converts the encoded signals to loudspeaker signals. The decoder has to be designed for your particular listening arrangement and takes into account the positions of the loudspeakers. As with first-order Ambisonics, regular layouts on a circle or sphere provide the best results.

The number of loudspeakers required is at least the number of HOA encoded channels coming in.

A so-called Basic decoder provides a physical reconstruction of the sound field at the centre of the array. The size of this physically accurately reconstructed area increases with increasing order but decreases with frequency. Low frequency ranges can be reproduced physically (holophony) but eventually the well-reproduced region becomes smaller than the size of a human head and decoding is generally switched to a max rE decoder, which is designed to optimise psychoacoustic cues.

The (slightly trippy) animation shows orders 1, 3, 5 and 7 of a 500 Hz sine wave to demonstrate the increasing size of the well-reconstructed region at the centre of the array. All of the loudspeakers interact to recreate the exact sound field at the centre but there is some unwanted interference out of the sweet spot.

Why HOA?

Since the number of loudspeakers has to at least match the number of HOA channels the cost and practicality are often the main limiting factor. How many people can afford 64 loudspeakers needed for a 7th order rendering? So why bother encoding things to a high order if we are limited to lower order playback? Two reasons: future-proofing and binaural.

First, future-proofing. One of the nice properties of HOA is that you can select a subset of channels to use for a lower order rendering. The first four channels in a fifth-order mix are exactly the same as the four channels of a first-order mix (see the spherical harmonic images above). We can easily ignore the higher order channels without having to do any approximative down-mixing. By encoding at a higher order than might be feasible at the minute you can remain ready for a future when loudspeakers cost the same as a cup of coffee (we can dream, right?)!

Second, binaural. If the limiting factors to HOA are cost and loudspeaker placement issues then what if we use headphones instead? A binaural rendering uses headphones to place a set of virtual loudspeakers around the listener. Now our rendering is only limited by the number of channels our PC/laptop/smartphone can handle at any one time (and the quality of the HRTF). The aXMonitor is an example of an Ambisonics-to-binaural decoder that can be loaded into any DAW that accepts VST format plugins, plug Pro Tools | Ultimate in AAX format.

The Future

As first-order Ambisonics makes its way into the workflow of not just VR/AR but also music production environments, we’re already seeing companies preparing to introduce HOA. Facebook already includes a version of second-order Ambisonics in its Facebook 360 Spatial Workstation [edit: They are now up to third order!]. Google have stated that they are working to expand beyond first-order for YouTube. I have worked with VideoLabs to include third-order Ambisonics in VLC Media player. This is in the newest version of VLC.

Microphones for recording higher than first-order aren’t at the stage of being accessible to everyone yet, but there are tools, like the a7 Ambisonics Suite that will let you encoded mono signals up to seventh-order, as well as to process the Ambisonics signal. There are also up-mixers like Harpex if you want to get higher orders from existing first-order recordings.

All of this means that if you can encoded your work in higher orders now, you should. You do not want to have to go back to your projects to rework them in six months or a year when you can do it now.

Posted on

What Is… Spatial Audio?

This post is the first in a What Is… series. The idea is to explain different techniques, terminology and concepts related to spatial audio. This will range from the most common terms right through to some more obscure topics. And where better to start than “spatial audio” even means!

Spatial audio (with some exceptions) has generally been confined to academia but is rapidly finding applications in virtual reality (VR). There are even moves to bring it to broadcasting so it can be enjoyed by people in the comfort of their living rooms. As spatial audio moves from labs to living rooms it is worth exploring all of the different techniques that have been developed up to this point.

However, defining spatial audio can quickly become rather philosophical. For example, is a mono recording spatial audio? If I take a single microphone to a concert hall and record a performance then I have captured the sense of space, through echoes and reverberation, not just the performances themselves. This means that the space is encoded into the signal – we can tell if a recording is made in a dry studio or a cathedral. For the purposes of this series I will not be considering this to be spatial audio. Instead, I will be defining spatial audio as any audio encoding or rendering technique that allows for direction to be added to the source. How well this is reproduced to the listener will depend on the encoding and playback system but, in general, a spatial audio system will allow different sounds placed in different positions to be directionally differentiated.

There are a large number of different spatial audio techniques available and which one you want to use will depend on the final use. These techniques include (but are in no way limited to):

  • Stereophony
  • Vector Base Amplitude Panning (VBAP)
  • Ambisonics and Higher Order Ambisonics (HOA)
  • Binaural rendering (using HRTFs over headphones)
  • Wave Field Synthesis (WFS)
  • Loudspeaker diffusion
  • Discrete loudspeaker techniques

Each of these will be explained in more detail in future posts but you can see from this non-exhaustive list that there are already quite a few techniques to choose between. To further complicate things, some of these techniques can be combined in order to take advantage of different properties of both. For example, Ambisonics and binaural can be combined in VR and augmented reality (AR) to give a headphone-based rendering that can be easily rotated (a nice property of Ambisonics).

Spatial audio techniques can also be divided between those that aim to produce a physically accurate sound field in (at least some of) the listening area and those that are not concerned with matching a “real” sound field. HOA and WFS can both be used to recreate a holophonic sound scene using an array of loudspeakers. Meanwhile, stereo and VBAP do not recreate any target sound field but are still able to produce sounds in different directions.

Whether or not the spatial audio technique is physically-based or not, we also have to consider the potentially most important element in the whole chain: the listener! All of these techniques rely on how we perceive the sound and there are any number of confounding factors that can take our nicely defined (in a mathematical sense) system and throw many of our assumptions out the window. Therefore, this What Is… series will also include elements of spatial hearing and psychoacoustics that are essential to consider when working with spatial audio.

So, spatially audio can take a number of forms, each with their own advantage, disadvantages, limits and creative possibilities. It is these, along with the technical and psychoacoustic underpinnings, that I will expand upon in upcoming blog posts.

If there are any aspects of spatial audio that you’d like to have explained then leave a comment below.